Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (1): 51-61.doi: 10.3969/j.issn.2097-0706.2025.01.007
• VPP Multi-Energy Optimization • Previous Articles Next Articles
NIE Xueying1,2(), CHENG Maosong1,2,*(
), ZUO Xiandi1, DAI Zhimin1,2(
)
Received:
2024-08-14
Revised:
2024-10-31
Published:
2025-01-25
Contact:
CHENG Maosong
E-mail:niexueying@sinap.ac.cn;chengmaosong@sinap.ac.cn;daizhimin@sinap.ac.cn
CLC Number:
NIE Xueying, CHENG Maosong, ZUO Xiandi, DAI Zhimin. Capacity optimization of wind-solar-nuclear-energy storage hybrid system considering wind and solar energy consumption[J]. Integrated Intelligent Energy, 2025, 47(1): 51-61.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.01.007
Table 1
Operation parameters of the hybrid energy system[6,16,28-29]
组件名称 | 运行参数 | 数值 |
---|---|---|
光伏电池(PV-TD190MF5) | 额定功率/W | 150 |
模块尺寸/mm | 1 658×834×46 | |
组件参考效率/% | 13.7 | |
温度系数 | 0.005 | |
参考电池温度/℃ | 25.0 | |
电池额定运行温度/℃ | 47.5 | |
风机(GW82-1500) | 风机轮毂高度/m | 70 |
风速计高度/m | 10 | |
表面粗糙度长度/m | 1.5 | |
额定功率/kW | 1 500 | |
切入风速/(m·s-1) | 3 | |
切出风速/(m·s-1) | 22 | |
额定风速/(m·s-1) | 13 | |
蓄热系统 | 能量耗散率 | 0 |
蓄热效率/% | 100 | |
放热效率/% | 100 | |
最大蓄热容量/(MW·h) | ||
最小蓄热容量/(MW·h) | 0.05 | |
初始蓄热容量/(MW·h) | 0.05 | |
热功转化系统 | 热转化效率/% | 40 |
[1] | 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9. |
SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9. | |
[2] | 齐国愿. 可再生能源混合储能容量优化配置研究[D]. 兰州: 兰州理工大学, 2021. |
QI Guoyuan. Study on optimal allocation of hybrid energy storage capacity of renewable energy[D]. Lanzhou: Lanzhou University of Technology, 2021. | |
[3] | MICHAELSON D, JIANG J. Review of integration of small modular reactors in renewable energy microgrids[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111638. |
[4] | 张馨玉, 郭慧芳, 袁永龙. 全球小型模块化反应堆发展综述[C]. 中国核科学技术进展报告(第七卷)——中国核学会2021年学术年会论文集第8册(核情报分卷), 2021: 240-247. |
ZHANG Xinyu, GUO Huifang, YUAN Yonglong. A Review of the Development of Global Small Modular Reactors[C]. Proceedings of the 2021 Annual Academic Conference of the Chinese Nuclear Society (Volume 7) — Nuclear Intelligence Volume, 2021: 240-247. | |
[5] | 曹亚丽, 王韶伟, 熊文彬, 等. 小型模块化反应堆特性及应用分析[J]. 核电子学与探测技术, 2014, 34(6): 801-806. |
CAO Yali, WANG Shaowei, XIONG Wenbin, et al. Features and application analysis of the small modular reactors[J]. Nuclear Electronics & Detection Technology, 2014, 34(6): 801-806. | |
[6] | ZHAO B C, CHENG M S, LIU C, et al. Conceptual design and preliminary performance analysis of a hybrid nuclear-solar power system with molten-salt packed-bed thermal energy storage for on-demand power supply[J]. Energy Conversion and Management, 2018, 166: 174-186. |
[7] | ROSS M, BINDRA H. Estimating energy storage size for Nuclear-Renewable hybrid energy systems using data-driven stochastic emulators[J]. Journal of Energy Storage, 2021, 40: 102787. |
[8] | GERKŠIČ S, VRANČIĆ D, ČALIČ D, et al. A perspective of using nuclear power as a dispatchable power source for covering the daily fluctuations of solar power[J]. Energy, 2023, 284: 128531. |
[9] | BORISOVA A, POPOV D. An option for the integration of solar photovoltaics into small nuclear power plant with thermal energy storage[J]. Sustainable Energy Technologies and Assessments, 2016, 18: 119-126. |
[10] | DENHOLM P, KING J C, KUTCHER C F, et al. Decarbonizing the electric sector: Combining renewable and nuclear energy using thermal storage[J]. Energy Policy, 2012, 44: 301-311. |
[11] | GABBAR H A, ABDUSSAMI M R, ADHAM M I. Optimal planning of nuclear-renewable micro-hybrid energy system by particle swarm optimization[J]. IEEE Access, 2020, 8: 181049-181073. |
[12] |
王晓燕, 吴书泉. 基于改进粒子群优化算法的源网荷储系统容量配置研究[J]. 综合智慧能源, 2024, 46(9): 28-36.
doi: 10.3969/j.issn.2097-0706.2024.09.004 |
WANG Xiaoyan, WU Shuquan. Research on capacity allocation for source-grid-load-storage systems based on improved PSO[J]. Integrated Intelligent Energy, 2024, 46(9): 28-36.
doi: 10.3969/j.issn.2097-0706.2024.09.004 |
|
[13] | MAHMOUDI S M, MALEKI A, REZAEI OCHBELAGH D. Techno-economic assessment of hydrogen-based energy storage systems in determining the optimal configuration of the nuclear-renewable hybrid energy system[J]. Energy Reports, 2024, 11: 4713-4725 |
[14] |
姚芳, 杨晓娜, 葛磊蛟, 等. 风-光-氢能源系统容量优化配置研究[J]. 综合智慧能源, 2022, 44(5): 56-63.
doi: 10.3969/j.issn.2097-0706.2022.05.006 |
YAO Fang, YANG Xiaona, GE Leijiao, et al. Optimization of capacity allocation scheme for wind-solar-hydrogen energy system[J]. Integrated Intelligent Energy, 2022, 44(5): 56-63.
doi: 10.3969/j.issn.2097-0706.2022.05.006 |
|
[15] | DAI Z M. Thorium molten salt reactor nuclear energy system (TMSR)[J]. Molten Salt Reactors and Thorium Energy, 2017:531-540. |
[16] | FARES D, FATHI M, MEKHILEF S. Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system[J]. Applied Energy, 2022, 305: 117823. |
[17] | EVANS D L. Simplified method for predicting photovoltaic array output[J]. Solar Energy, 1981, 27(6): 555-560. |
[18] | LI J Z, LIU P, LI Z. Optimal design and techno-economic analysis of a hybrid renewable energy system for off-grid power supply and hydrogen production: a case study of West China[J]. Chemical Engineering Research and Design, 2022, 177: 604-614. |
[19] | HEYDARI A, ASKARZADEH A. Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept[J]. Applied Energy, 2016, 165: 601-611. |
[20] | SRINIVAS N, DEB K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248. |
[21] | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
[22] | ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization[J]. Evolutionary Methods For Design, Optimization, and Control, 2002: 95-100. |
[23] | DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. |
[24] | LI M Q, YANG S X, LIU X H. Shift-based density estimation for pareto-based algorithms in many shift-based objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 348-365. |
[25] | XU C B, KE Y M, LI Y B, et al. Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-Ⅱ and CRITIC-TOPSIS[J]. Energy Conversion and Management, 2020, 215: 112892. |
[26] | European Commission. Photovoltaic Geographical Information System[EB/OL].(2022-03-01)[2024-08-10]. https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP. |
[27] | NIE X Y, CHENG M S, ZUO X D, et al. Multi-objective capacity configuration optimization of a nuclear-renewable hybrid system[J]. Applied Thermal Engineering, 2024, 248: 123365. |
[28] | HE Y, GUO S, ZHOU J X, et al. The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies[J]. Energy Conversion and Management, 2021, 229: 113779. |
[29] | HE Y, GUO S, ZHOU J, et al. Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages[J]. Renewable Energy, 2022, 184: 776-790. |
[1] | JIANG Yan, SONG Chenhui, ZHANG Ning, HE Bo, LU Yuting. Study on optimized operation model and strategy for virtual power plants considering multi-energy coupling [J]. Integrated Intelligent Energy, 2025, 47(1): 34-41. |
[2] | YE Fei, ZHONG Xiaojing, GUAN Qianfeng. Research on network attack modeling, evolution and response cost of power cyber physical systems [J]. Integrated Intelligent Energy, 2024, 46(5): 58-64. |
[3] | LI Yimin, DONG Haiying, DING Kun, WANG Jinyan. Multi-stage optimal allocation of energy storage considering long-term load probability prediction [J]. Integrated Intelligent Energy, 2024, 46(2): 19-27. |
[4] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[5] | HUANG Yinheng, LI Meng, PANG Yi, LIANG Yin, JIN Zengfeng, WANG Jinzhu. Research on optimization method for capacity allocation and scheduling strategy of regional integrated energy systems [J]. Integrated Intelligent Energy, 2023, 45(6): 34-41. |
[6] | DONG Weijie, CUI Quansheng, HAO Lanxin, WANG Yilong, LIU Guolin. Study on orderly charging strategy of electric vehicles in residential areas [J]. Integrated Intelligent Energy, 2023, 45(1): 82-87. |
[7] | WEI Yanping, WANG Jun, LI Nanfan, SHI Changli. Prediction model of stochastic power in industrial parks based on Markov chain [J]. Integrated Intelligent Energy, 2023, 45(1): 14-22. |
[8] | WANG Xiaohai, XU Jingjing, HU Yongfeng, LIU Guangyu, WANG Youtian. Business analysis on integrated energy services of power generation enterprises under the new circumstances [J]. Integrated Intelligent Energy, 2022, 44(3): 9-16. |
[9] | WEN Gangcheng, SHI Xin, ZHANG Yi, FANG Fang. Research on two-stage planning optimization approach for community integrated energy systems considering off-design conditions [J]. Integrated Intelligent Energy, 2022, 44(10): 1-11. |
[10] | YU Xiaobao, ZHENG Dandan, YANG Kang, KONG Jie, ZHANG Tianhao. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak [J]. Huadian Technology, 2021, 43(6): 21-32. |
[11] | XU Ganglei. Discussion on sustainable development of large hydropower projects in southwestern China under new situation [J]. Huadian Technology, 2021, 43(5): 80-85. |
[12] | ZHAO Guotao, QIAN Guoming, WANG Sheng, DING Quan, ZHU Haidong. Analysis on solution for green and low-carbon transformation of thermal power enterprises to achieve carbon peak and carbon neutrality [J]. Huadian Technology, 2021, 43(10): 11-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||